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Abstract 

Offshore wind development (OWD) will generate much needed renewable energy, but it will also introduce several stressors to the ma- 
rine ecosystem. Therefore, there is a need to develop information-rich monitoring programs to assess ecological impacts and inform 

solutions to mitigate adverse effects. This paper evaluates potential indicators of OWD impacts on fisheries resources that could be 
considered for monitoring programs, including indices of aggregate biomass, sensitive species, fish size, and trophic dynamics. Short- 
term (year-to-year) variability and the direction and strength of long-term trends were explored at both the scale of the US Southern 

New England wind energy area (WEA) and at the scale of the Southern New England region. The majority of candidate OWD indicators 
exhibited substantial temporal variability at either the WEA scale, the region scale, or both, highlighting the importance of addressing 

temporal variability in the design and duration of monitoring programs. Recommendations are provided to advance informative mon- 
itoring approaches both in the USA and elsewhere where such approaches are urgently needed. Among these is a recommendation 

for a minimum of 3–5 years of baseline data collection and continued monitoring for the lifetime of the wind project. This will enable 
an understanding of the temporal structure inherent to the time series of ecological indicators measured so that OWD impacts can be 
disentangled from those caused by other ecosystem pressures. 

Keywords: renewable energy; impact assessment; experimental design; temporal variability; survey design 
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Introduction 

Offshore wind development (OWD) is a central component 
of society’s approach to generating renewable energy as it 
moves toward reducing its reliance on fossil fuels to com- 
bat global climate change. Currently, the USA is on track to 

develop 30 GW of offshore wind energy capacity by 2030 

and an additional 15 GW by 2035 (DOI 2022 ). The OWD 

process is in varying stages along the Atlantic, Pacific, and 

Gulf of Mexico coasts in the USA, but the nation’s first utility 
scale offshore wind farm will be constructed in the North- 
east US Continental Shelf (NES) ecosystem (BOEM 2022 ).
In addition to its ample wind resources, the NES ecosystem 

is also home to critical habitats, protected species, and some 
of the most productive fisheries on the planet (NOAA 2021 ,
2022a ). 

Along with the benefits of renewable energy production,
utility scale OWD will also bring an unprecedented suite of 
stressors to the NES ecosystem, many of which will persist 
for 30 + years. These include noise, electro-magnetic fields 
(EMFs), altered patterns of local and regional hydrodynamics,
habitat conversion, artificial reef effects (i.e. effects of interac- 
tions that form and maintain a reef and its associated com- 
munity), and fish attraction device (FAD) effects (i.e. attrac- 
tion of fish to structure for forage, habitat, or refuge) (Hogan 

et al. 2023 ). A growing body of peer-reviewed scientific liter- 
ature suggests that these stressors have important effects on 

marine ecosystems (Gill et al. 2020 , Methratta et al. 2020 ,
Hogan et al. 2023 ). Well-designed monitoring is key to the 
co-existence of offshore wind with sustainable fisheries and 

a healthy marine ecosystem. Such monitoring should be able 
to detect biologically meaningful changes and provide oppor- 
© The Author(s) 2024. Published by Oxford University Press on behalf of Interna
article distributed under the terms of the Creative Commons Attribution License 
reuse, distribution, and reproduction in any medium, provided the original work 
unities to mitigate adverse impacts. Ideally, monitoring plans 
ould sample meaningful biological indices, use experimen- 

al designs capable of detecting change, collect data that are
omparable among projects and with regional long-term data 
ets, and provide open and transparent access to information 

or stakeholders (ROSA 2021 ). Lacking these fundamental 
haracteristics, the outcome is a scenario in which scientists,
anagers, and decision-makers are data-rich but information- 
oor ( sensu Wilding et al. 2017 ). 
Identifying suitable metrics to assess the impact OWD at the

cale of the individual wind project, which can also be com-
ared across wind projects, and inform regional and ecosys- 
em change, is a central challenge facing monitoring programs 
ROSA 2021 ). Useful indicators are those that are scientif-
cally rigorous, measurable, representative of key properties 
nd processes, and are straightforward to interpret when they 
hange (Smit et al. 2021 , NOAA 2022b ). In the context of off-
hore wind, useful indicators for monitoring programs would 

lso be sensitive to specific stressors associated with OWD.
andidate indicators are emerging from ongoing research at 
ind farms worldwide. For example, conversion of habitat 

rom soft bottom to hard structures is associated with in-
reased local abundance of finfish and invertebrates (Reubens 
t al. 2011 , 2013a , van Hal et al. 2017 , HDR 2020 , Buyse et
l. 2022 , Wilber et al. 2022a ), shifts in size structure (Vanden-
riessche et al. 2015 ), changes in fish condition (Reubens et
l. 2013b , 2014 ), and altered trophic dynamics (Mavraki et
l. 2020a , Wilber et al. 2022b , Buyse et al. 2023 ). Noise from
mpact pile driving can affect physiology, behavior, foraging,
ommunication, mating cues, and migratory patterns (Pop- 
er and Hawkins 2019 ), while operational noise may cause
tional Council for the Exploration of the Sea. This is an Open Access 
( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted 
is properly cited. 
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 variety of sublethal effects (Westerberg 1994 , Bergström et
l. 2013 , Mooney et al. 2020 , Ströber and Thomsen 2021 ,
resci et al. 2023 ). EMFs associated with OWD cables elicit
ehavioral responses in EMF sensitive species such as Ameri-
an lobster ( Homarus americanus ) and little skate ( Leucoraja
rinacea ) in laboratory settings (Hutchison et al. 2020a ). Lo-
al and broad scale changes in hydrodynamics around wind
arms are expected (Christiansen et al. 2022 , Daewel et al.
022 ). Although these effects are not yet well understood,
here is a potential for effects on larval transport for demer-
al species (Barbut et al. 2020 ), on food resources for plank-
ivores (Slavik et al. 2019 , van Berkel et al. 2020 , Daewel et
l. 2022 ), and on physical water column properties that affect
pecies distributions (Daewel et al. 2022 , Dorrell et al. 2022 ).

Ecological indicators to assess marine ecosystem status
ave been the focus of over two decades of research in the
ES ecosystem with emphasis placed on identifying indica-

ors of fishing pressure and climate change (Brodziak and Link
002 , Methratta and Link 2006 , Large et al. 2015 , NOAA
022a ). Indicators are an essential component of develop-
ng integrated ecosystem assessments (IEAs), an operational
pproach to ecosystem-based management, comprised of a
ulti-step process which allows the evaluation of cross-sector

rade-offs (Samhouri et al. 2014 , NOAA 2022a , RODA 2023 ).
ndicators selected for project-level monitoring could also be
onsidered as candidates for assessment of ecosystem status in
n IEA framework, linking together local project scale moni-
oring with efforts to assess the status of the whole ecosystem
e.g. NOAA 2022a ). Additionally, ecological indicators could
lso be informative for stock assessments of species that are
xpected to be responsive to OWD through a gain of habitat
e.g. structure oriented species) or a loss of habitat (e.g. soft
ottom species). 
Choosing the appropriate duration over which monitoring

rograms should occur is another challenge. While there is sci-
ntific need for collecting data to understand impacts of OWD,
onitoring programs are expensive and require access to a

imited supply of vessels and sampling gear. Therefore, the se-
ection of monitoring program duration must be deliberative,
urposeful, and scientifically justifiable. The idea that moni-
oring programs should be long-term, spanning the lifespan
f the wind project through decommissioning, is supported
y the longest running OWD monitoring programs in exis-
ence which show new and ecologically meaningful changes
 10 years after construction (Degraer et al. 2021 , Buyse et al.
023 ). Furthermore, the NES is a dynamic system under mul-
iple pressures, including climate change (Hare et al. 2016 ),
hich is driving a northward range expansion for many ma-

ine species due to warming waters (Lucey and Nye 2010 ,
ell et al. 2015 , Walsh et al. 2015 , Grieve et al. 2016 ). This
ynamism poses a quandary for conventional before–after
WD monitoring approaches, which focus on the compar-

son of mean values observed at two time points (i.e. be-
ore and after construction) in both impact and control loca-
ions (Methratta 2020 ), because such comparisons neglect the
nderlying structure of temporal variability. Although issues
urrounding spatial variability have been discussed elsewhere
Methratta 2020 , 2021 ), the confounding effects of underly-
ng temporal structure on OWD monitoring studies and their
nterpretation have received less attention. 

The purpose of this paper is to (i) explore year-to-year and
ong-term temporal trends in 25 ecological indicators of OWD
nteractions with fisheries resources at the spatial scale of a
ind energy area (WEA) and the region where it occurs; (ii)
xamine whether significant long-term trends at the spatial
cale of the WEA are consistent with broad scale regional
ong-term trends; and (iii) make recommendations for mon-
toring, including specific recommendations for addressing
emporal variability in developing methodological approaches
or monitoring OWDs. This study focuses on biotic indicators
or which there is peer-reviewed evidence for responsiveness
o stressors associated with OWD. The Southern New England
SNE) WEA is used as a case study as it is the putative loca-
ion of the first utility scale OWD in the USA; however, the
onclusions and recommendations provided have utility for
arine ecosystems around the world where OWD is planned
r underway. 

aterials and methods 

ata sets, study area, and data analysis 

ata from the Northeast Fisheries Science Center’s (NEFSC’s)
ottom trawl survey were used to evaluate ecological indica-
ors expected to be responsive to OWD. The NEFSC bottom
rawl survey has sampled the distribution and abundance of
sheries resources in the NES ecosystem during the spring
nd fall annually since 1963 (Azarovitz 1981 , Politis et al.
014 ). In addition to measures of abundance, individual fish
iets have been sampled as part of the survey since 1973
Link and Almeida 2000 , Smith and Link 2010 ). Annual es-
imates were calculated for 25 indices that are representative
f ecosystem processes and functions and that are expected to
e responsive to stressors associated with OWD ( Tables 1 –4 )
Brodziak and Link 2002 , Methratta and Link 2006 , Large et
l. 2015 , NOAA 2022a , b ). These included indices of aggre-
ate biomass, sensitive species, fish size, and trophic dynamics.

For each of 25 ecological indicators, survey data were ag-
regated at the spatial scale of the SNE WEA and at the spatial
cale of the SNE region ( Fig. 1 ) for each year. For each of the
wo spatial scales (SNE WEA and SNE region), data were av-
raged across seasons to create annual averages for indicators
f aggregate biomass, sensitive species, and trophic dynamics
rom 1980 to 2021 (excluding 2020) and for each size-based
ndicators from 1992 to 2021 (excluding 2020). No stations
ere sampled in the SNE region during either spring or fall
f 2020 because of the COVID-19 pandemic. The SNE WEA
ccupies ∼3675 km 

2 located ∼10–40 nautical miles south of
he Massachusetts coast. Depths in the SNE WEA range from
7 to 60 m and bottom types are mainly comprised of fine-
rained sediments with areas of sand, mud, and mud mixed
ith gravel (Guida et al. 2017 ). Between 1980 and 2021, the
EFSC bottom trawl survey sampled 7 ± 2 (mean ± stan-
ard deviation) stations per year in the SNE WEA. The SNE
egion is one of four primary regions of the NES ecosystem
efined by NEFSC based on hydrographic variables (Walsh et
l. 2015 ). 

Year-to-year variability was explored by calculating three
easures of temporal variability: (i) the consecutive dispar-

ty index (CD), which is calculated as the natural log of the
roportional difference between consecutive years, thereby
ncorporating temporal autocorrelation associated with the
hronological order of values (e.g. Fernandez-Martinez et
l. 2018 , Fernandez-Martinez and Penuelas 2021 , Martin–
ide et al. 2022 ); (ii) the proportional variability index (PV),
hich evaluates temporal variability by calculating the av-
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Table 1. Aggregate biomass indices: definition, rationale, and stressor associations. 

Indicator Definition 
Indicator 
rationale Stressor associations 

References linking indicator with OWD 

stressors 

Demersal biomass Annual average 
demersal species 
biomass 

Aggregate status FAD effects; Reef effects Wilhelmsson et al. 2006 , Reubens et al. 
2011 

Elasmobranch 
biomass 

Annual average 
elasmobrach species 
biomass 

Aggregate status EMFs Gill et al. 2012 , Hutchison et al. 2018 , 
Gill and Desender 2020 , Gill et al. 
2020 , Kalmaijn 1982 

Flatfish biomass Annual average flatfish 
species biomass 

Aggregate status Hydrodynamics (larvae); 
Decreased soft bottom 

Hydro: Barbut et al. 2020 , van Berkel et 
al. 2020 ; Soft bottom: Stenberg et al. 
2015 , Buyse et al. 2022 , Wilber et al. 
2022a 

Gadid biomass Annual average gadid 
species biomass 

Aggregate status Noise; Hydrodynamics 
(larvae); Increased hard 
bottom; Reef effects; FAD 

effects 

Noise: Bergstrom et al. 2013 , Popper 
and Hawkins 2019 , Westerberg et al. 
1994; Hydro: Daewel et al. 2022 , van 
Berkel et al. 2020 , Slavik et al. 2019 ; 
Hard bottom: Reubens et al. 2013a , 
2013b , 2013c ; Reef effects: Reubens 
et al. 2013a , 2013c , Stenberg et al. 
2015 ; FAD: Wilhelmsson et al. 2006 , 
Reubens et al. 2011 

Pelagic biomass Annual average pelagic 
species biomass 

Aggregate status Noise van Hal et al. 2017 , Jones et al. 2020 , 
2021 , Sole et al. 2022 

Pelagic 
biomass/Demersal 
biomass 

Ratio of pelagic fish 
biomass to demersal 
fish biomass 

Energy flow, 
community 
structure 

FAD effects Leonhard et al. 2011 , van Hal et al. 
2017 

Species diversity Shannon–Weaver 
index 

Community 
structure 

FAD effects; Reef effects Stenberg et al. 2015 

Total fish biomass Annual average 
biomass of most 
abundant species 

Aggregate status FAD effects Wilhelmsson et al. 2006 , Reubens et al. 
2011 

Table 2. Sensitive species indices: definition, rationale, and stressor associations. 

Indicator Definition 
Indicator 
rationale 

Stressor 
associations 

References linking indicator with OWD 

stressors 

Black sea bass 
biomass 

Annual average black 
species biomass 

Reef associated 
species 

Noise; Increased 
hard bottom; 
FAD 

Noise: Stanley et al. 2020 , Debusschere 
et al. 2016 ; Increased hard bottom & 

FAD: Wilber et al. 2022a , HDR 2020 
Ctenophore 

index 
Annual average % of spiny 

dogfish diets composed of 
Ctenophores 

Sensitive species; 
Planktonic 
species 

Hydrodynamics Smith et al. 2016 , Wang et al. 2018 , 
Daewel et al. 2022 

Little skate 
biomass 

Annual average little skate 
biomass 

Sensitive species EMFs Kalmaijn 1982 , Gill et al. 2012 , 
Hutchison et al. 2018 , 2020a ,b , Gill 
and Desender 2020 

Longfin squid 
biomass 

Annual average longfin 
species biomass 

Sensitive species Noise Jones et al. 2020 , 2021 , Sole et al. 2022 
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erage proportional variability among all possible combina- 
tions of values in a time series, thereby reducing the effects 
of temporal autocorrelation (e.g. Heath and Borowsky 2013 ,
Fernandez-Martinez et al. 2018 ); and (iii) the coefficient of 
variation (CV), which calculates temporal variability as pro- 
portional deviation of the standard deviation of the time se- 
ries from its mean (e.g. Fernandez-Martinez et al. 2018 ). A CD 

of ≥50% would indicate that there was on average a ≥50% 

change between consecutive years in the time series; a PV 

of ≥50% would show that there was on average a ≥50% 

difference between all pair-wise combinations of years; and 

a CV of ≥50% would demonstrate that the standard devi- 
ation of the time series was at least half the value of the 
mean. The presence of long-term directional temporal trends 
was evaluated with a Mann–Kendall test, a non-parametric 
approach for evaluating significant trends (Hollander and 
olfe 1973 , Cotter 2009 ). Concurrence or non-concurrence 
n the directionality of long-term trends at the WEA and
egion scales was determined by comparison of model 
esults. 

ggregate biomass and sensitive species indices 

he most abundant species in the SNE WEA were identified as
pecies occurring in ≥4 tows and contributing > 0.65 kg/tow
uring the most recent 11 years of the bottom trawl survey
2010–2019 and 2021; N = 73 stations). The most recent 11-
ear time block was used to identify abundant species to en-
ure all relevant species were included in the analyses. Species
eeting these criteria were included in an evaluation of tem-
oral trends for indices of aggregate biomass, sensitive species,
ize, and trophic dynamics. 
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Table 3. Size-based indices: definition, rationale, and stressor associations. 

Indicator Definition 
Indicator 
rationale Stressor associations 

References linking indicator with OWD 

stressors 

Finfish 
condition 

Annual average Fulton 
finfish condition 
index 

Fish condition Increased hard bottom; 
Decreased soft 
bottom; Reef effects 

Hard bottom: Reubens et al. 2014 ; Soft 
bottom: Wilber et al. 2022b ; Reef 
effects: Reubens et al. 2014 

Finfish length Annual average finfish 
length 

Size distribution Increase hard bottom; 
Decreased soft 
bottom; Reef effects; 
Reduced fishing 
pressure 

Hard bottom: Vandendriessche et al. 2015 , 
Reubens et al. 2014 ; Soft bottom: Wilber 
et al. 2022a ; Reef effects: Reubens et al. 
2014 ; Reduced fishing pressure: Roach 
et al. 2018 

Finfish weight Annual average finfish 
weight 

Size distribution Increased hard bottom; 
Decreased soft 
bottom; Reef effects 

Hard bottom: Vandendriessche et al. 2015 , 
Reubens et al. 2014 ; Soft bottom: Wilber 
et al. 2022b ; Reef effects: Reubens et al. 
2014 

Small/large 
fish ratio 

Ratio of small fish 
biomass to large fish 
biomass 

Index of fish 
productivity 

Increased hard bottom; 
Hydrodynamics; Reef 
effects 

Hard bottom: Reubens et al. 2014 ; Hydro: 
Shields et al. 2011, Slavik et al. 2019 , 
Barbut et al. 2020 , Daewel et al. 2022 ; 
Reef effects: Reubens et al. 2014 

Table 4. Trophic dynamic indices: definition, rationale, and stressor associations. 

Indicator Definition Indicator rationale 
Stressor 
associations 

References linking indicator with OWD 

stressors 

Benthivore 
biomass 

Annual average benthivore 
biomass 

Energy flow, 
community 
structure 

Increased hard 
bottom; 
Decreased soft 
bottom; Reef 
effects; FAD 

effects 

Hard bottom: Mavraki et al. 2021 ; Soft 
bottom: Wilber et al. 2022a , Stenberg 
et al. 2015 ; Reef effects: Buyse et al. 
2023 ; FAD: Buyse et al. 2022 , 2023 , 
Vandendriessche et al. 2015 

Benthivore 
consumption 

Benthivore per capita annual 
consumption 

Energy flow, 
community 
structure 

Increased hard 
bottom; 
Decreased soft 
bottom; Reef 
effects; EMFs 
(decapod 
consumers) 

Hard bottom: Mavraki et al. 2021 ; Soft 
bottom: Mavraki et al. 2021 , Buyse et 
al. 2022 , Wilber et al. 2022b ; Reef 
effects: Buyse et al. 2023 , Scott et al. 
2018 , Thatcher et al. 2023 

Diet diversity Shannon-Weaver index of 
diversity of prey in 
predator stomachs 

Change in prey 
field, energy flow, 
number of 
trophic links 

Increased hard 
bottom; 
Decreased soft 
bottom; Reef 
effects 

Hard bottom: Mavraki et al. 2020a ,b , 
2021 , ter Hofstede et al. 2022 , 
Reubens et al. 2011 , 2013b ; Soft 
bottom: Wilber et al. 2022b ; Reef 
effects: Reubens et al. 2011 ; 2013 

Forage species 
biomass 

Annual average forage 
species biomass 

Energy flow, 
community 
structure 

Hydrodynamics; 
Reef effects; 
FAD effects 

Hydro: Floeter et al. 2017 , van Berkel et 
al. 2020 ; Shields et al. 2011; Reef 
effects: van Hal et al. 2017 , Leonhard 
et al. 2011 ; FAD: van Hal et al. 2017 , 
Leonhard et al. 2011 , Mavraki et al. 
2021 , Wilhelmsson et al. 2006 

Piscivore 
biomass 

Annual average piscivore 
biomass 

Energy flow, 
community 
structure 

Increased hard 
bottom; Reef 
effects 

Mavraki et al. 2021 , Wilber et al. 2022a 

Piscivore 
consumption 

Piscivore per capita annual 
consumption 

Energy flow, 
community 
structure 

Reef effects Wilber et al. 2022b 

Planktivore 
biomass 

Annual average planktivore 
biomass 

Energy flow, 
community 
structure 

Hydrodynamics; 
Reef effects; 
FAD effects 

Hydro: Floeter et al. 2017 , van Berkel et 
al. 2020 , Shields et al. 2011; Reef 
effects: van Hal et al. 2017 , Leonhard 
et al. 2011 , Mavraki et al. 2021 ; FAD: 
van Hal et al. 2017 , Leonhard et al. 
2011 , Mavraki et al. 2021 , 
Wilhelmsson et al. 2006 

Planktivore 
consumption 

Planktivore per capita 
annual consumption 

Energy flow, 
community 
structure 

Increased hard 
bottom; Reef 
effects 

Mavraki et al. 2021 

Trophic level 
(TL) ratio 

TL ratio of (Planktivore + 

Benthivore) / 
(Deapodivore + Piscivore) 

Energy flow, 
community 
structure 

Increased hard 
bottom; Reef 
effects 

Mavraki et al. 2021 and Wilber et al. 
2022b 
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New 
York

Massachuse�s

Connec�cut R.I.

SNE WEA

Figure 1. Map of Southern New England wind energy area (SNE WEA) within the SNE region with bathymetry contours (m). 
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Average yearly catch biomass (kg/tow/yr) within the SNE 

WEA was calculated for eight aggregate biomass indices and 

four sensitive species or species groups. Tables 1 and 2 provide 
the rationale and stressors associated with aggregate biomass 
and sensitive species indices. The Ctenophore index was cal- 
culated as the average annual percentage of spiny dogfish di- 
ets composed of Ctenophores (Link and Ford 2006 ). Species 
diversity was calculated using Shannon’s index of species di- 
versity (H): H = −�pi × ln(pi), where p is the proportion of 
individuals of species i . 

Size-based indices 

Size-based indices included the average annual per capita 
length (cm) and weight (kg) of individual fish, and fish con- 
dition which was calculated using Fulton’s condition index 

(weight/length 

3 ) (Bolger and Connelly 1989 ) ( Table 3 ). In ad- 
dition, a size-based indicator of fish productivity was calcu- 
lated as the yearly ratio of small fish to large fish. Categorical 
size classes based on fish length as defined in the NEFSC bot- 
tom trawl database were used (see Smith and Smith 2020 for 
size ranges for each species). The seven species included in this 
ndex were chosen to match the species used to calculate this
ndex in the Mid-Atlantic State of the Ecosystem Report (SOE)
NOAA 2022a ). These species were: black sea bass ( Centro-
ristis striata ), red hake ( Urophycis chuss ), silver hake ( Mer-

uccius bilinearis ), summer flounder ( Paralichthys dentatus ),
indowpane ( Scophthalmus aquosus ), winter flounder ( Pseu- 
opleuronectes americanus ), and yellowtail flounder ( Pleu- 
onectes ferruginea ). Three other species were included in the
alculation of this index in the SOE report (NOAA 2022a ),
ut were not included here because they did not occur at SNE
EA stations. 

rophic dynamic indices 

 total of nine trophic indices were evaluated to explore can-
idate indices that may be responsive to changes in prey avail-
bility and energy uptake driven by OWD ( Table 4 ). First,
rophic guilds were identified using stomach content analy- 
is and supporting information from Smith and Link (2010) .
tomach content data used in analyses were collected dur- 
ng the NEFSC bottom trawl survey stations which were con-
ucted in the SNE WEA during 2010–2019 and 2021 ( N = 73
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Table 5. The most abundant species in the SNE WEA sampled during 20 1 0-2021. Summary statistics are provided in the online supplemental material 
(Table S1) . 

Common name Scientific name 
Trophic 
Guild 

Alewife Alosa pseudoharengus Planktivore 
Atlantic Herring Clupea harengus Planktivore 
Atlantic Mackerel Scomber scombrus Planktivore 
Barndoor Skate Dipturus laevis Benthivore 
Black Sea Bass Centropristis striata Benthivore 
Bluefish Pomatomus saltatrix Piscivore 
Butterfish Peprilus triacanthus Planktivore 
Fouspot Flounder Paralichthys oblongus Benthivore 
Goosefish Lophius americanus Piscivore 
Haddock Melanogrammus aeglefinus Benthivore 
Little Skate Leucoraja erinacea Benthivore 
Longfin Squid Doryteuthis pealeii Piscivore 
Longhorn Sculpin Myoxocephalus 

octodecemspinosus 
Benthivore 

Northern Searobin Prionotus carolinus Benthivore 
Red Hake Urophycis chuss Benthivore 
Round Herring Spr atelloides gr acilis Planktivore 
Sea Scallop Placopecten magellanicus Planktivore 
Scup Stenotomus chrysops Benthivore 
Silver Hake Merluccius bilinearis Benthivore 
Smooth Dogfish Mustelus canis Benthivore 
Spiny Dogish Squalus acanthias Piscivore 
Spotted Hake Urophycis regia Benthivore 
Striped Searobin Prionotus evolans Benthivore 
Summer Flounder Paralichthys dentatus Piscivore 
Windowpane Scophthalmus aquosus Benthivore 
Winter Flounder Pseudopleuronectes americanus Benthivore 
Winter Skate Leucoraja ocellata Benthivore 
Yellowtail Flounder Limanda ferruginea Benthivore 
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tations). Diet composition was calculated using the meth-
ds of Buckel et al. (1999) . Trophic groups were identified
ith hierarchical agglomerative cluster analysis. Euclidean
istance and the complete agglomeration method were used.
he amount of variation explained with the observed number
f clusters was examined using canonical discriminant anal-
sis. Species with > 20 stomachs were included in the clus-
er analysis. For species with < 50 stomachs whose entire diet
readth may not be captured by the dataset, trophic guild as-
ignment was verified by comparing results with the trophic
elationships presented in Smith and Link (2010) and Malek
t al. (2016) . Average yearly catch biomass (kg/tow/yr) and
he annual per capita rate of consumption for each feeding
uild within the SNE WEA were calculated. Per capita con-
umption rates were estimated for each trophic guild with the
vacuation rate methods of Eggers (1977) and Elliot and Pers-
on (1978) . Equations and demonstrations of these methods
re reported in Smith and Smith (2020) . In addition to the ag-
regate catch biomass and consumption rates for each trophic
uild, additional trophic metrics included forage species catch
iomass, prey diversity (i.e. Shannon’s index of diversity of
he proportional prey contents of individual predators), and
he trophic level ratio (i.e. the ratio of lower to higher trophic
evels) ( Table 4 ). 

esults 

ggregate biomass indices 

wenty-eight species occurred in ≥4 stations and con-
ributed > 0.65 kg/tow annually between 2010–2019 and
021 ( Table 5 ). These species were included in calcula-
ions for indices of aggregate biomass, size, and trophic
ynamics. 
Large year-to-year variability for several aggregate biomass

ndicators was demonstrated by the indices of temporal vari-
bility. At the WEA scale, 7/8 (88%) indicators had a CD
f ≥50% meaning that there was on average ≥50% change
etween consecutive years ( Figs 2 and 3 ). Five of eight indica-
ors (63%) had a PV of ≥50% showing that there was on av-
rage a ≥50% difference between all pair-wise combinations
f years. Seven of eight indicators (88%) had a CV of ≥50%
emonstrating that the standard error of the time series was at
east half the value of the mean for those indicators. Across all
hree measures of temporal variability, gadid biomass, pelagic
sh biomass, and the pelagic: demersal fish ratio exhibited
he highest year-to-year variability. At the region scale, one of
ight (13%) aggregate biomass indicators (pelagic: demersal
atio) had a CD, PV, and CV that exceeded 50% ( Fig. 4 ). Six
f eight (75%) indicators had a PV or a CV ≥25%. At the re-
ion scale, the pelagic:demersal ratio had the highest measures
f year-to-year variability. Species diversity showed the least
ear-to-year variability at both the WEA and region scales of
ll aggregate biomass indicators evaluated. 

Long-term temporal trends in aggregate biomass indica-
ors at both the WEA and region scale were evidenced by
he Mann–Kendall test results ( Table 6 ). At the WEA scale,
here was a long-term increasing trend for gadid biomass.
t the region scale, there were long-term decreasing trends

or 7/8 (88%) indicators, including demersal biomass, elas-
obranch biomass, flatfish biomass, gadid biomass, pelagic
iomass, pelagic: demersal ratio, and total fish biomass,
 Table 6 ). 

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae010#supplementary-data
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Figure 2. Aggregate biomass indicator time series at the scale of the Southern New England WEA. (A) Demersal Fish Biomass (kg/tow); (B) 
Elasmobranch Biomass (k g/to w); (C) Flatfish Biomass (k g/to w); (D) Gadid Biomass (k g/to w); (E) Pelagic Fish Biomass (k g/to w); (F) Pelagic/Demersal 
Ratio; (G) Species Diversity; (H) Total Fish Biomass (k g/to w). 
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Sensitive species indices 

High year-to-year variability was found for the sensitive 
species indices. At the WEA scale, 3/4 (75%) of indicators had 

a CD and a CV ≥50%; 2/4 (50%) indicators had a PV ≥50% 

( Figs 3 and 5 ). At the region scale, 1/4 (25%) indicators had 

a CD and a PV ≥50%; 2/4 (50%) had a CV ≥50% ( Fig. 4 ).
otably all but 1 sensitive species indicator (75%) had a CD,
V, and a CV > 25% at the region scale. Black sea bass and
ittle skate biomass had the greatest year-to-year variability at 
he region scale. At the WEA scale, black sea bass biomass, lit-
le skate biomass, and longfin squid biomass had the highest
ear-to-year variability. 
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At both the WEA and region scales, long-term increasing
rends were found for both black sea bass biomass and the
tenophore index as shown by the significant results of the
ann–Kendall test ( Table 6 ). There were no long-term trends

or either little skate biomass or longfin squid at either spatial
cale. 

ize-based indices 

ish productivity was the most temporally variable of the
ize-based indicators. At the WEA scale, the CD, PV, and CV
or fish productivity ranged from 35% to 47%, whereas at
he region scale, these measures ranged from 23% to 27%
 Figs 3 and 4 ). At the WEA scale, the year-to-year variability
easures for length, weight, and condition ranged from 6% to
2% ( Figs 3 and 6 ). At the region scale, the year-to-year vari-
bility measures for fish length, weight, and condition ranged
rom 3% to 10% ( Figs 4 and 6 ). The Mann–Kendall test found
 significant long-term increasing trend for fish condition at
oth the WEA and region scales, and a significant decreasing
rend in fish length at the region scale only ( Table 6 ). There
as no long-term trend for either fish weight or the produc-

ivity index. 

rophic dynamic indices 

our primary feeding guilds were identified in the SNE WEA:
lanktivores, piscivores, and two groups of benthivores: those
hat mainly consume decapods and amphipods, and those
hat mainly consume annelids and amphipods ( Fig. 7 ). The
iets of individual species within each guild are provided
ith the online supplemental material (Table S2 , Figure S1) .
anonical discriminant analysis indicated that four clusters

xplained 83% of the variation. Planktivore diets were mainly

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae010#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsae010#supplementary-data
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composed of copepods and animal remains which are likely 
partially digested zooplankton. Benthivore diets were di- 
verse. For Amphipod/Annelid consumers, those two prey taxa 
combined represented 58%–67% of the diet. For the Deca- 
pod/Amphipod consumer group, decapods and amphipods 
combined represented 32%–93% of the diet. Other prey con- 
sumed by this group included Mysidacea and other small crus- 
taceans. Piscivores consumed finfish in the families of Gadi- 
dae, Clupidea, Cottidae, Rajidae as well as other fish species 
in addition to cephalopods (4%–16% of diet). 

The indices of temporal variability showed substantial year- 
to-year variability for all trophic indices ( Figs 3 and 4 .). At 
the WEA scale, 7/9 (78%) indicators had a CD, PV, and a 
CV of ≥50% ( Fig. 3 ). The indicators with the greatest year- 
to-year variability at the WEA scale were piscivore biomass,
planktivore biomass, planktivore consumption, and trophic 
evel ratio ( Figs 3 and 8 ). At the region scale, 3/9 (33%)
ndicators had a CD ≥50%, 3/9 (33%) had a PV ≥50%,
nd 4/9 (44%) had a CV ≥50%. At both scales, across all
rophic dynamic indicators except one (diet diversity), mea- 
ures of temporal variability were ≥25%. The indicators with 

he greatest year-to-year variability at the region scale were 
iscivore biomass, planktivore biomass, and trophic level ra- 
io. Diet diversity had the lowest year-to-year variability of all
f the trophic indicators at both the WEA and region scales
 Figs 3 and 4 ). Mann–Kendall test results showed significant
ecreasing long-term trends for four trophic indicators at the 
egion scale (diet diversity and consumption by benthivores,
iscivores, and planktivores) ( Table 6 ). Significant long-term 

ecreasing trends for piscivore consumption and diet diversity 
ere also observed at the WEA scale. A significant increasing

rend in benthivore biomass was found at the WEA scale only.
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Table 6. Results of Mann–Kendall test for significant long-term trends at the scale of the SNE wind energy area (WEA) and the scale of the SNE region. 

Wind energy area Region 

Indicator tau P Direction tau P Direction 

Aggregate biomass indices 
Demersal biomass − 0 .061 ns n/a − 0 .445 ∗∗∗∗ decrease 
Elasmobranch biomass − 0 .117 ns n/a − 0 .463 ∗∗∗∗ decrease 
Flatfish biomass − 0 .093 ns n/a − 0 .463 ∗∗∗∗ decrease 
Gadid biomass 0 .207 ∗ increase − 0 .296 ∗∗ decrease 
Pelagic biomass 0 .085 ns n/a − 0 .231 ∗ decrease 
Pelagic:demersal ratio 0 .054 ns n/a − 0 .231 ∗ decrease 
Species diversity − 0 .078 ns n/a 0 .015 ns n/a 
Total fish biomass − 0 .088 ns n/a − 0 .491 ∗∗∗∗ decrease 

Sensitive species indices 
Black sea bass biomass 0 .528 ∗∗∗∗ increase 0 .456 ∗∗∗ increase 
Ctenophore index 0 .554 ∗∗∗ increase 0 .616 ∗∗∗∗ increase 
Little skate biomass 0 .148 ns n/a − 0 .138 ns n/a 
Longfin squid biomass 0 .035 ns n/a − 0 .129 ns n/a 

Size-based indices 
Fish condition index 0 .345 ∗∗ increase 0 .356 ∗∗ increase 
Fish length − 0 .192 ns n/a − 0 .292 ∗ decrease 
Fish weight − 0 .020 ns n/a 0 .094 ns n/a 
Productivity index − 0 .224 ns n/a 0 .159 ns n/a 

Trophic dynamic indices 
Benthivore biomass 0 .340 ∗∗ increase − 0 .214 ns n/a 
Benthivore consumption 0 .054 ns n/a − 0 .407 ∗∗ decrease 
Diet diversity − 0 .256 ∗ decrease − 0 .697 ∗∗∗∗ decrease 
Forage fish biomass − 0 .108 ns n/a − 0 .035 ns n/a 
Piscivore biomass − 0 .054 ns n/a 0 .044 ns n/a 
Piscivore consumption − 0 .286 ∗ decrease − 0 .379 ∗∗ decrease 
Planktivore biomass − 0 .138 ns n/a − 0 .039 ns n/a 
Planktivore consumption − 0 .158 ns n/a − 0 .421 ∗∗ decrease 
Trophic level ratio 0 .143 ns n/a − 0 .241 ns n/a 

Shading indicates significant results. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001; ns = not significant; n/a = not applicable. 
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here were no long-term trends for forage fish biomass, pis-
ivore biomass, planktivore biomass, or trophic level ratio at
ither spatial scale. 

ummary of comparisons between WEA scale and 

egional scale long-term trends 

verall, there was a total of seven indices that exhibited
ignificant long-term temporal trends at the WEA scale and
5 indices with significant long-term trends at the scale of
he region ( Table 6 ). The trends for six indices were sig-
ificant at both the WEA scale and the region scale. Two
f these were negative trends, including piscivore consump-
ion and diet diversity. Three of these had positive trends at
oth scales, including the size-based index of fish condition
nd the sensitive species indices of black sea bass and the
tenophore index. When significant trends occurred at both

cales, the directionality of the trends concurred in all cases
xcept for gadid biomass. At the WEA scale, gadid biomass
howed a significant increasing trend, while at the region
cale the significant long-term trend was negative for gadid
iomass. There were nine instances where a long-term trend
as significant at the region scale but not at the WEA scale

 Table 6 ). This included significant long-term declines in dem-
rsal biomass, elasmobranch biomass, flatfish biomass, pelagic
iomass, pelagic:demersal ratio, total fish biomass, fish length,
enthivore consumption, and planktivore consumption. One
ndicator, benthivore biomass, showed a significant increas-
ng trend at the WEA scale that was not evident at the region
cale. There were nine indicators that showed no long-term
rend at either spatial scale, including species diversity, little
kate biomass, longfin squid biomass, fish weight, productiv-
ty index, forage fish biomass, piscivore biomass, planktivore
iomass, and trophic level ratio. 

iscussion 

valuation of candidate indicators 

ultiple ecological indices were evaluated that could be used
n project level monitoring programs to inform how OWD
ffects fisheries resources. These candidate indices meet the
riteria for useful indicators in the context of OWD in the
ES ecosystem; they are scientifically rigorous, measurable,

epresentative of key properties and processes of the system,
nd sensitive to specific stressors associated with OWD. Estab-
ishing a suite of ecological indicators to be measured across
rojects could provide a powerful approach for assessing the
tatus of fish communities at OWDs. Cross-project compara-
ility would aid in detecting common trends among projects
nd enable comparisons with regional and ecosystem wide
atterns. Ecological indicators could also be informative for
tock assessments of species such as black sea bass that are
xpected to be responsive to OWD through a gain or loss of
abitat. Although there are a wide array of potentially infor-
ative indicators, this study focused on biotic indicators for
hich there is peer-reviewed evidence for responsiveness to

tressors associated with OWD. 
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Figure 5. Sensitive species indicator time series at the scale of the Southern New England WEA. (A) Black Sea Bass Biomass (kg/tow); (B) Ctenophore 
Index; (C) Little Skate Biomass (kg/tow); (D) Longfin Squid Biomass (kg/tow) 
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Short-term and long-term variability in candidate 

indicators 

The majority of indicators evaluated exhibited substantial 
year-to-year variation at both the WEA and region scales as 
demonstrated by the general concurrence among three in- 
dices of short-term temporal variability. Significant long-term 

trends were also observed for many indicators at both the 
WEA and region scales. The directionality of long-term trends 
generally concurred between scales (5 instances). This was ev- 
ident when trends occurred broadly across the region and in 

the WEA (Heim et al. 2021 , Gervelis et al. 2023 ). Trends ob- 
servable at the region scale but absent at the WEA scale (9 

instances) may be due to spatially heterogeneous trends in the 
region that do not overlap the WEA. An alternative explana- 
tion is that the sample size at the WEA scale was not sufficient 
to characterize the long-term trends at that scale, highlighting 
the importance of sufficient sample replication. A trend evi- 
dent only at the scale of the WEA but absent at the region 

scale (1 instance) would reflect very localized trends inside the 
WEA and perhaps elsewhere in the region that are not evident 
1  
t the scale of the region. The directionality of trends for one
ndicator, gadid biomass, exhibited non-concurrence between 

he WEA and region scales, suggesting that some portions of
he region such as the WEA may be particularly important for
hese species. 

hallenges of temporal variability for the detection 

f impacts at OWDs 

xisting temporal variability poses a challenge to monitor- 
ng OWDs in the ocean using common experimental de- 
igns. Chief among these is the ability to understand exist-
ng patterns of variability so that treatment effects can be dis-
inguished from background variation. Control-impact and 

efore–after–control–impact (BACI) designs (Green 1979 ) are 
urrently the most common experimental designs used to 

onitor OWD effects on marine fish and shellfish (Methratta 
020 , 2021 ). In the USA, OWD monitoring programs typi-
ally propose a BACI design that collects 0–2 years of pre-
onstruction data, 0–1 year of data during construction, and 

–3 years of post-construction data at the impact site and at
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Figure 6. Size-based indicator time series at the scale of the Southern New England WEA. (A) Fish Condition Index; (B) Fish Length (cm); (C) Fish 
Weight (g); (D) Productivity Index. 
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ne or more control sites (Methratta et al. 2023 ). Limited pre-
nd post-construction sampling duration prevents a critical
ssessment of the existing temporal structure in the ecological
esponses measured and an understanding how these patterns
hange with OWD. Without this information, researchers can
nly discuss temporal patterns anecdotally in the interpreta-
ion of results. In the NES ecosystem and elsewhere, a well-
stablished body of knowledge has demonstrated clear and
irectional changes in the distribution and abundance of ma-
ine species over time associated with climate change (Lucey
nd Nye 2010 , Bell et al. 2015 , Walsh et al. 2015 ). Disentan-
ling OWD effects from this and other pressures acting on
he system requires an understanding of the temporal struc-
ure of the indicators being measured. The analyses presented
ere underscore the substantial short- and long-term tempo-
al variability in candidate indicators for OWD impacts, high-
ighting the importance of understanding the temporal struc-
ure in these measures and the need for long-term monitoring
o do so. 
y  
oward tackling the challenges of temporal 
ariability in the detection of OWD impacts 

ackling the challenges brought about by temporal variability
or the detection of ecological responses to OWD requires at
east two elements. The first element is the collection of longer
ime series of project-level data than are typically proposed
n the USA. A minimum of three to five of pre-construction
aseline data would be needed to assess existing inter-annual
ariability. This is because one or two years of data are insuf-
cient to understand the baseline temporal structure of these
ndicators as evidenced by the results presented here. For ex-
mple, with one or two years of data, it is not possible to know
hether the sampled years are outliers, or perhaps close to

he mean of the time series, or if they are possibly part of a
re-existing directional trend. Even three to five years is ar-
uably insufficient to answer these questions, but this would
t least enable an initial pattern to be established. Further,
here is no reason to expect that impacts will cease within 1–3
ears of construction, thus our understanding of the role of
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OWD at local and broad spatial scales in the NES ecosystem 

and elsewhere would benefit from post-construction monitor- 
ing throughout the entire lifetime (30 + years) of the wind 

project. The need for long-term monitoring is supported by re- 
ports from the longest-running OWD monitoring programs in 

Europe which show new and ecologically meaningful changes 
> 10 years after construction (Degraer et al. 2021 , Buyse et 
al. 2023 ). Such long-term monitoring is not unheard of in 

the context of energy projects. For example, monitoring up- 
stream and downstream passage of anadromous fish at hy- 
droelectric dams to inform mitigation efforts occurs at least 
80 hydropower projects across the USA (FERC 2004 ), with 

some monitoring spanning > 30 years (Normandeau Asso- 
ciates 2021 ). The utility of long-term monitoring at the OWD 

project level may become even greater as these studies hold 

the potential to also fill anticipated gaps in long-term fish- 
ries independent surveys caused by OWD and provide much 

eeded information for stock assessments (Hare et al. 2022 ,
ethratta et al. 2023 ). 
The second element is the application of analytical tools to

WD monitoring data that can address the question, “how 

oes the temporal trend in meaningful ecological indicators 
nd the causal inferences we make about those trends compare
efore vs. during vs. after development?” Modern time series 
nalysis techniques are equipped to answer these questions 
nd could be valuable tools for offshore wind researchers.
or example, time series analytical methods could be used to
ompare multiple time series and identify common trends, al-
owing inferences to be made about potential causal relation- 
hips with OWD stressors and other environmental covari- 
tes (Zuur et al. 2003a ,b , Zimmerman et al. 2018 , Navarra et
l. 2022 ). Advancing such methodologies could enable practi- 
ioners to consider temporal variance in their study design and
tatistical analyses, evaluate temporal trends in and around 

he impact area before and after construction, use quantita- 
ive methodologies to make causal inferences about the drivers
f temporal trends, and distinguish OWD impacts from other 
ources of variability. For a robust understanding of the in-
erconnection between stressors derived from OWD and eco- 
ogical responses, long-term monitoring should be conducted 

n tandem with targeted research, including both controlled 

aboratory-based research studies utilizing treatment levels on 

ar with those experienced in the field, and project-level field-
ased experiments (e.g. Lindeboom et al. 2015 , Cresci et al.
022 , Sole et al. 2022 ). 

electing ecological indicators for OWD 

his study examined biotic indicators for which there is peer-
eviewed evidence for responsiveness to stressors associated 

ith OWD. How should a final subset of indicators be selected
or monitoring? Evaluating multiple, minimally duplicative 
ndicators across projects would provide a more comprehen- 
ive status evaluation than any one indicator because each 

rovides insight into unique aspects of the ecosystem (Trenkel 
nd Rochet 2003 , Rombouts et al. 2013 ). Final selection
f which fisheries resource indicators to measure at OWDs
hould be based on open and transparent discussions with off-
hore wind stakeholders and be guided by such factors as pri-
rity research question and hypotheses to be addressed; fish- 
ries resource species specific to the project area that are vul-
erable to OWD; management objectives or needs; the ability
o set decision criteria, thresholds, and control rules; and what
ypes of project-level mitigation might be triggered following 
hreshold exceedance (Link 2005 , Smit et al. 2021 ). Indica-
ors selected for studying the response of fisheries resources 
o project-level impacts could also inform stock assessment 
odels as well as the indicator selection process for ecosystem

ssessment in the context of the IEA process, a framework for
upporting EBM efforts (NOAA 2022a ). 

onclusions and recommendations 

WD monitoring programs both in the USA and elsewhere ur-
ently need information-rich monitoring approaches. To that 
nd, the following are recommended: (i) Identify clear moni- 
oring objectives and hypotheses; (ii) Select a set of meaning-
ul ecological indicators that can be sampled across projects 
ithin a region that link to stated objectives. The current

tudy offers several potential candidate indicators; (iii) Col- 
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Figure 8. Trophic indicator time series at the scale of the Southern New England WEA. (A) Benthivore Biomass (kg/tow); (B) Benthivore Consumption 
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ect indicator data using standardized methods across projects
hat are comparable to those used by long-term regional and
cosystem-wide surveys; (iv) Use methodologies that enable
ross-scale comparisons (project, region, ecosystem scales) of
emporal trends and allow the detection of divergence of
roject-level trends from broad-scale trends; (v) Collect at
east three to five years of project-level baseline indicator data
n order to assess inter-annual variability and account for tem-
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poral structure in the data analysis phase; (vi) Conduct post- 
construction project-level monitoring for the lifetime of the 
project; (vii) Apply quantitative methods that allow for the 
analysis of trends in time series data, the ability to make infer- 
ences about the drivers of those trends, and the ability to deter- 
mine if those drivers differ before vs. after construction; (viii) 
Identify, vet with stakeholders, and select meaningful decision 

criteria, including thresholds at which action should be taken 

to avoid, minimize, or mitigate adverse impacts; (ix) Incor- 
porate ecological indicators into an IEA framework, enabling 
evaluation of cross-sector trade-offs (Samhouri et al. 2014 ,
NOAA 2022a , RODA 2023 ); (x) Provide open and transpar- 
ent access to data and information to stakeholders. 
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